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Abstrac:t-erack driving forces for thermoelasticity are derived on the basis of the general framework
ofThermodynamics ofIrreversible Processes. It is demonstrated that the thermodynamic forces are
distinct from conventional energetic forces. Relationships between the two types of forces are
investigated and a possible experimental examination as to whether thermodynamic or energetic
forces might be responsible for crack propagation is discussed.

I. INTRODUCTION

Energetic forces are introduced to characterize causes which drive cracks and other defects
in solids[l]. These forces are defined as partial derivatives of potential energy with respect
to corresponding defect configuration parameters.

Usually fracture is an irreversible process which is often coupled with other irreversible
physicochemical processes like phase and chemical transformations, heat and mass transfer,
etc. Thermodynamics of irreversible processes (TIP) offers a general framework to study
these phenomena, in particular, by introducing the thermodynamic forces. It is demon­
strated below that thermodynamic forces are distinct from conventional energetic forces
like the J-integral.

In this paper thermodynamic and energetic forces for thermoelasticity are derived
following the thermodynamic approach[2]. Relationships between the two types of forces
are investigated and a possible experimental examination as to whether thermodynamic or
energetic forces might be responsible for a crack propagation, is discussed.

2. THERMODYNAMIC CONSIDERATION

Crack growth is usually preceded and accompanied by damage. In this paper we
identify damage as a system of material inhomogeneities, and damage nucleation and
growth as a material transformation. Damage, in general, can be characterized by its density
and orientation. We assume, for simplicity, that the orientation of inhomogeneities with
respect to the crack does not vary in a process of crack growth and accompanying damage
propagation. Therefore, the scalar damage density is incorporated as the only thermo­
dynamic state parameter characterizing damage.

The stress tensor ai} and the absolute temperature T conventionally constitute a set of
state parameters for thermoelasticity. This set, extended by the damaged parameter p, is
chosen as a list of state parameters for the damaged thermoelastic medium :

{aij, T,p}.

In what follows we derive the thermodynamic forces associated with damage.
The local energy balance is conventionally taken as
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Here u stands for the rate of internal energy density, £u is the strain rate tensor, the product
ai'''i) represents the rate of work density.): stands for the heat flux, and the usual summation
convention on repeated indices is employed.

It is convenient to express the internal energy density u in term of Gibbs' potential
density 9 and the entropy density s:

(3)

Here, eij is the total strain tensor component.
The entropy production oS; introduced in TIP is the most important characteristic of

irreversible processes. It is defined as a portion of the total entropy density rate s
(4)

with St = -ok[(l/nJfl to be the entropy density rate due to heat exchange (for a closed
system).

Employing the energy balance (2), decomposition of the internal energy density (3),
and definition of the entropy production (4) we arrive at .

. 1(. . . 'FOkT)s· = - - g+sT+e·a+; -
I T U I) T' (5)

In conventional thermoelasticity, the Gibbs' potential density g, often designated as the
thermoelastic potential energy density n, is expressed as a Taylor's decomposition with
respect to the state parameters a ij and T. The coefficients of decomposition represent
material properties such as elastic compliances, thermal expansion coefficient, etc., and the
first term of the decomposition represents the reference level ofg.

For the damaged thermoelastic medium, the rate of Gibbs' potential density ,q is
affected by damage growth p in two ways, through changes in (i) the reference level and
(ii) the material property coefficients included in n. Hence,

(6)

Here, }' is the difference between Gibbs' potential densities in undamaged and damaged
states per unit damage density; and n is taken in the same form as in conventional
thermoelasticity, but with the material property coefficients being functions of the damage
parameter p.

The assumption of local equilibrium, conventional in TIP, yields the thermoelastic
constitutive equations:

onl""=_5oT p ,

Accounting for (6)-(8) the local entropy production (5) takes the form:

(7)

(8)

(9)

In TIP, entropy production is conventionally presented as a bilinear form of generalized
fluxes and reciprocal thermodynamic forces, such as Jf and - OkT/T2 for heat transfer. For
the rate of damage density p, taken as a flux, the reciprocal force is - (l/T)[y+(on:/cp)].
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3. CRACK LAYER APPROACH

A system of a crack and its surrounding dartlage is designated as a crack layer (CL)
[2]. The part of the CL within which the rate of damage accumulation is positive (p > 0) is
defined as an active zone. For a small active zone, the CL theory models fracture propa­
gation as active zone movements: translation, rotation, isotropic expansion, and distortion.
There are thermodynamic forces corresponding to each of these elementary movements. In
this paper we consider translational and expansional forces only. They can be identified
based on global entropy production due to CL translation and expansion.

The global entropy production is the integral of (9) over the entire volume of a solid:

lobal f· f Y . iore p iOkT
;Q~ = sdV=- -pdV- --dV- -J dV

, V J V T v op T V T2 k •
(10)

The first two integrals on the r.h.s. of (10) are reduced to those over the active zone
VA since p is nonzero only within this domain and they represent the global entropy
production due to damage growth. The first integral is associated with the energy consumed
by material transformation from an undamaged into a damaged state such as craze or new
surface formation. It reflects the resistance to CL propagation. The second integral evidently
represents the entropy production associated with the potential energy release rate, and is
defined as the impellent of CL. The last integral in (10) conventionally reflects the entropy
rate due to heat transfer.

It is assumed that the active zone moves maintaining a self-similar distribution of
damage such that the rate of damage density p at a given point x, in an Euler system of
coordinates, can be expressed as

(II)

where ~ is a position vector in the movable system of Cartesian coordinates with the origin
at the crack tip and the I-axis chosen along the tangent to the crack trajectories, Vk(~) is
the kth component of the velocity vector. Reducing the general motion of the active zone
to the 20 translation I and isotropic expansion e, the velocity is

(12)

provided i,k = 1,2 and ()ik is the Kronecker symbol.
It should be noted that the rate of the active zone translation I coincides with the rate

of crack growth.
The damage density rate p (11) with (12) becomes

Upon substitution of (13) into (10) we write

~IObal = Ix 1+eX"P - Iv jfO;~d V.

(13)

(14)

Here, I and eare considered to be generalized fluxes which stand for translation and
expansion of the active zone, respectively; XI and X"P are reciprocal thermodynamic
forces:

(15)

(16)

In the above expressions R I , and R··P represent the resistance to active zone translation
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and expansion. I} and r'p are defined as translational and expansional impellents. From
(10) and (13) we obtain:

(17)

(18)

4. IMPELLENT FORCES IN THERMOELASTICITY

The translational impel/ent
For a homogeneous medium the density of elastic potential energy 1t is a function of

the state parameters and does not depend on coordinates explicitly:

1t = 1t[aij(~), T(~), p(~)].

Consequently,

where, for a two-dimensional case, i, j and k = I, 2.
Using constitutive eqns (7) and (8), (20) can be rewritten as

Elastic potential energy density is defined as

(19)

(20)

(21)

(22)

where f represents the strain energy density which is conventionally expressed in thermo­
elasticity as folJows:

(23)

The value rJ.ij is a coefficient of thermal expansion, To is the absolute temperature for the natural
state when the strain is zero everywhere, and U; is a displacement component.

Constitutive relation (7) with (22) and (23) gives rise to

(24)

Upon substitution of (21), (22) and (24) into (17) and accounting for equilibrium equations

JI can be rewritten as

aij.j = 0, (25)

(26)

Here, Pi} is an elastic distortion defined as the difference between the total distortion u,.}

and the thermal rJ.;iT- To). Then, the total strain Cij = }(u,.j+ uj .;).
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Employing Gauss' theorem we finally arrive at
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Here nj is thejth component of the unit outward normal to an integration path dVA•

The expansional impel/ent
Upon application of the technique used above, the expansional impellent Iexp results

in the following form :

(28)

Applying Gauss' theorem to (28) we have

The area integrals in (27) and (29) cannot be, in general, converted into line integrals.
The path integrals in (27) and (29) resemble the well-known elastic J I- and M-integrals.

Similitude between II and I··P on one side, and J I and M on another reflects a relationship
between thermodynamic and energetic forces which is discussed below.

5. ENERGETIC FORCES IN THERMOELASTICITY

A number of papers on evaluation of the energy release rate for thermoelasticity and
the corresponding J-integral have been published since 1978. Two main formalisms have
been developed to derive the energetic forces in elasticity. The first is based on direct
calculation of the potential energy rate with respect to crack length; the second makes use
of Lagrangian formalism. The formalisms have been extended for thermoelasticity by
several authors[3-8]. The problem is discussed in Refs. [9-11]. A brief review of the results
can be found in Refs. [7, 8].

To derive the energetic forces in this section we follow the formalism of Ref. [2]
extended to thermoelasticity in Ref. [8].

Let us consider now the rate of potential energy Pdue to damage growth

. r on
P = Jv op PdV. (30)

Upon substitution of (13) into (30) we conclude that P can be expressed through
translational and expansional energetic forces:

P= -IJI-eM,

where the translational energetic force is

and expansional

(31)

(32)

(33)
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Upon application of the same technique as in the previous section, the integrals (32)
and (33) become path integrals:

(34)

(35)

These integrals repeat those in elasticity, except for employing distortion {3ij instead of u,.]' In
essence (34) and (35) are the same as those obtained earlier in Ref. [8], although presented in
the different form. In Ref. [8] J I and M are expressed by means of the total displacement vector
and consist of both the path and the area integrals.

Since the integrands in (34) and (35) are obtained from divergent forms and p = 0
everywhere outside VA' the J I- and M-integrals are path invariant if OkT = 0 in this domain
also. Otherwise, path independence is not guaranteed, although J and M still represent the
corresponding energetic forces on the whole domain inside the chosen path.

6. DISCUSSION

To illustrate the relationships between thermodynamic and energetic forces we consider
the translational impellent II and the energy release rate J I •

The thermodynamic impellent II has been derived as

(27)

The energetic force is given by the J-integral in eqn (34). Here, we analyze the relationship
between the two for certain special cases.

An infinitesimal active zone
By shrinking the active zone VA onto the crack tip, we derive the II-integral for

an infinitesimal active zone. In the vicinity of the crack tip, the asymptotic behavior of
thermoelastic stress-strain fields repeats that for an elastic case. Hence, the singularity in(
and Gij{311 is of the order of r- 1. It can be shown[l2] that at the crack tip there is no
singularity in the temperature field and the order of singularity in temperature gradient
does not exceed that of r- I

/
2
, except in the case when a heat source is located at the crack

tip. Therefore, when the active zone VA is shrinking onto the crack tip, the area integral in
eqn (27) vanishes and the temperature approaches its value at the crack tip, T(O). After
taking the limit described above, (27) and (34) lead to

(36)

The integral J 1 can be computed by the conventional recipe.

The isothermal condition
For an isothermal condition, i.e. OkT = 0, the area integral in (27) vanishes and it

reduces to

(37)

provided that eqn (34) IS taken into account. The temperature T is uniform but not
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necessarily equal to the temperature To of the normal state. Therefore, the thermoelastic
Jrintegral is distinguished from pure elastic J)I and depends on the temperature differential
T - To. At the normal state, Le. in pure elasticity, the impellent is

J<I

1<1- 1
I--

To

and, thus in general, differs from that of eqn (37).

(38)

Small temperature variations
It should be noted that in linear thermoelasticity, the dimensionless temperature differ­

entialO = (T- To)/To is assumed to be small, so that terms containing e2 can be neglected.
With this approximation eqn (26) can be replaced by the following:

(39)

Since the integral in eqn (39) has the same sign as e, it is evident the impellent can be greater
or smaller then JI(e)/To. II can also be equal to JdTo. The area integral in eqn (39) vanishes,
for instance, when heat flow is uniform at infinity provided that the steady state temperature
is disturbed by an insulated crack with the circular active zone centered at the crack tip.

Relationships analogous to eqns (36)-{39) are valid also for the thermodynamic and
energetic expansional forces /CXP and M.

7. CONCLUDING REMARKS

Thermodynamic and energetic forces have been derived for thermoelasticity. Which is
the true force driving a crack? Essentially different from each other, they are both candidates.
One can resolve this dilemma by setting up an appropriate experimental examination based
on the difference in temperature dependencies of the thermodynamic and energetic forces.
One of the forces should be isolated from influencing crack propagation by keeping it
constant. The test thus conducted would reveal the dependence of the crack velocity on the
var:.ltion of the other force. Then we could identify the true force based on its one-to-one
correspondence with the crack growth rate.
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